
Martin Storsjö, VideoLAN Developer Days 2024

llvm-mingw
https://github.com/mstorsjo/llvm-mingw 
 +



What is llvm-mingw?

• A mingw-w64 (Windows) targeting toolchain based on LLVM components


• Freely redistributable, properly licensed opensource


• Most LLVM components can be used as drop-in replacements in an existing toolchain


• Clang ↔ GCC


• LLD ↔ GNU ld


• compiler-rt + libunwind ↔ libgcc


• libc++ ↔ libstdc++


• LLDB ↔ GDB


• llvm-mingw is set up standalone from scratch with all components replaced with LLVM counterparts



Why?

• Originally: Wanting a mingw toolchain to target Windows on ARM / AArch64


• Ended up as a universal modern toolchain alternative


• Equal support for all 4 architectures: i686, x86_64, armv7, aarch64


• Modern features


• PDB debug format support


• Address sanitizer, undefined behaviour sanitizer


• Control Flow Guard


• LLVM code base very easy to work with



What does it look like?

• Small, self-contained toolchain package


• Every toolchain package can cross compile for Windows, for any of the target architectures 
i686, x86_64, armv7, aarch64


• Prebuilt toolchains running on


• Linux: x86_64, aarch64


• macOS: Universal


• Windows: i686, x86_64, armv7, aarch64


• Releases built on Github Actions


• A new release every 2 weeks during most of the year



What’s new (since last year)?



GCC
GCC targeting aarch64-w64-mingw32

• The original purpose of llvm-mingw was for targeting ARM and ARM64


• GCC is getting support for targeting ARM64/Windows now as well


• Work ongoing for a couple of years, initial steps are finally upstreamed


• Still in early stages: Only supports C, not C++ yet


• No unwind info, no exception handling


• Not ABI compatible with the established mingw/aarch64 ABI yet


• wrong size for long double


• Variadic arguments uses the wrong calling convention


• Only uses msvcrt.dll, not UCRT yet


• End target is Cygwin/MSYS2 support (which is needed for fully native Git on Windows)



What’s new in mingw-w64
D3D12

• Much more complete D3D12 headers (via Wine)


• mingw-w64 takes many headers from Wine


• A frequent complaint used to be that the D3D12 headers were outdated


• The main D3D12 headers should now be up to date with the latest MS 
SDKs (as of end of 2023)



What’s new in mingw-w64
Math functions from UCRT

• Traditionally, mingw has used msvcrt.dll


• msvcrt.dll was originally provided by MSVC 6.0 in 1998


• Now ships as part of Windows, parts updated along the Windows versions, parts stale, parts 
missing (only promises what MSVC 6.0 did)


• mingw has provided their own, statically linked replacements for many things - in particular for 
math - for completeness and C99 compliance


• UCRT is C99 compliant


• Can skip the statically linked math functions


• Some UCRT math functions are much faster than the old ones provided by mingw (mingw 
powf was 7x slower than UCRT)



What’s new in LLVM
-fno-auto-import

• Normally, external variables can be linked from a DLL without dllimport attributes - comes with a 
small code generation overhead (all potentially dllimported variables referenced via .refptr stubs)


• With GCC, this can be omitted with -mcmodel=small (GCC only does .refptr on x86_64) 

• Felt that code model isn’t the right match here - range is only one out of many reasons 
for .refptr (Clang uses it on all architectures)


• Added a new option -fno-auto-import in Clang, for both compilation and linking


• Affects code generation when compiling


• Tells the linker to not auto import variables


• Gives a linker error rather than potential runtime error, if code was compiled with the options 
above but variables would have been auto imported



What’s new in LLVM
Misc

• Improved LTO support


• The whole base mingw-w64 libraries, including CRT startup files, can now be 
built with LTO


• Not really relevant for real toolchain use (not provided in prebuilt toolchains)


• If base files are LTO compiled, every linked executable requires LTO 
compilation


• COFF linker now respects SOURCE_DATE_EPOCH for timestamps in binaries


• Useful for reproducible builds



What’s new in LLVM
ARM64EC

• Lots of work on ARM64EC - ”Emulation Compatible”


• Windows 11 on ARM64 can emulate x86_64 binaries


• ARM64EC is an ABI for generating ARM64 code that fits into the x86_64 emulator


• Struct layouts, calling conventions match that of x86_64


• Some ARM64 registers disallowed (everything must be mappable back to a x86_64 register)


• Allows you to get near-native speeds for critical code by compiling it for ARM64EC


• Can mix and match ARM64EC and x86_64 DLLs within the same process


• Allows x86_64 plugin DLLs in an otherwise fully ported app


• Allows mixing ARM64EC and x86_64 within each EXE/DLL, on a function level



What’s new in llvm-mingw
C++ Modules

• Support for C++20 modules


• Works with recent CMake versions


• The toolchain has to provide clang-scan-deps to let the build system 
figure out dependencies between source files and modules


• Support for using libc++ as a C++23 std module


• Required cleanups of mingw-w64 headers



What’s new in llvm-mingw
Switching to Clang config files

• The defaults in Clang for a mingw target is to use libgcc, libstdc++ and link with <triple>-ld


• llvm-mingw traditionally uses wrapper scripts


• <triple>-clang (and <triple>-gcc to ease use with some build systems) is a wrapper (script or executable), 
internally invoking clang -target <triple> -rtlib=compiler-rt -unwindlib=libunwind -stdlib=libc+
+ -fuse-ld=lld 

• Wrappers hide this configuration from other tools


• Other Clang based tools like clangd (for IDE code completion) or clang-scan-deps operate on stored commands


• The tools see a command like <triple>-clang -c mysource.cpp - they can deduce that this means clang 
-target <triple> -c mysource.cpp 

• They don’t know that <triple>-clang actually is a wrapper that implicitly sets other flags 

• Could set hardcoded defaults in Clang binary when compiling


• Hardcoded defaults apply to all targets, making the same Clang binary unusable for any other target



What’s new in llvm-mingw
Switching to Clang config files

• Instead set target specific defaults via config files


• Next to the Clang binary, store a config file <triple>.cfg


• When Clang (or a Clang based tool) is invoked, it implicitly looks for any config files for the 
specific target it is invoked for (either explicit -target option, or implicit default)


• Avoids needing to set defaults in wrappers


• Allows getting rid of wrappers (almost)


• <triple>-clang can be a symlink to plain clang, clang picks up the target from the 
executed binary name


• Implicit options for UWP targets still require a wrapper though



Taking the same concept further?



Extending the concept?

• Single toolchain package for cross compiling for a multitude of targets is a neat thing


• Zig does this very nicely, even for multiple OSes


• Could we do the same kind of setup for e.g. Linux cross compilation?


• Targeting Linux, ”any” arch, from any OS


• Easily set up a similar kind of toolchain for targeting Musl


• Single package, prebuilt Musl and libc++ for a number of architectures


• Not useful for building programs for ”regular” Linux distributions though, as they usually have Glibc, but works well with static 
executables


• 69 MB package for targeting 6 architectures (i386, x86_64, arm, aarch64, powerpc64le, riscv64)


• Haven’t productized llvm-musl (yet) 

• Unsure about committing to maintaining another project


• Not sure how much extra value it adds vs regular GCC cross compiler packages



Extending the concept?

• What about Glibc?


• Compiling Glibc with Clang doesn’t (even close) work out of the box upstream


• There is a somewhat maintained branch with 137 patches on top of upstream, that should 
be buildable with Clang


• Even then, bootstrapping it is much more complex than mingw-w64 or Musl


• Even if we’d have a Clang+Glibc cross compilation toolchain, we’d need libstdc++ to 
produce binaries that work on a regular distribution (or statically link libc++)


• Maybe the same issue with libunwind as well, but that can possibly masquerade as libgcc


• Pretty much would need to set up the cross sysroots with GCC anyway



Thank you!

https://github.com/mstorsjo/llvm-mingw 



