llvm-mingw
https://github.com/mstorsjo/llvm-mingw +

«&* MinGW-wé64
“‘ A complete runtime environment for GCC & LLVM

for 32 and 64 bit Windows

Martin Storsjo, VideoLAN Developer Days 2024



What is llvm-mingw?

A mingw-w64 (Windows) targeting toolchain based on LLVM components
* Freely redistributable, properly licensed opensource

 Most LLVM components can be used as drop-in replacements in an existing toolchain

 Clang «& GCC

 LLD < GNU Id

e compiler-rt + libunwind < libgcc
* libc++ < libstdc++

 LLDB < GDB

* [lvm-mingw is set up standalone from scratch with all components replaced with LLVM counterparts



Why?

* Originally: Wanting a mingw toolchain to target Windows on ARM / AArch64
 Ended up as a universal modern toolchain alternative
 Equal support for all 4 architectures: 1686, x86_64, armv7/, aarch64
 Modern features
 PDB debug format support
 Address sanitizer, undefined behaviour sanitizer
* Control Flow Guard

 LLVM code base very easy to work with



What does it look like?

 Small, self-contained toolchain package

* Every toolchain package can cross compile for Windows, for any of the target architectures
1686, x86_64, armv/, aarch64

* Prebuilt toolchains running on
e Linux: x86 64, aarcht4
 macOS: Universal
e Windows: 1686, x86_64, armv/, aarcho4
* Releases built on Github Actions

* A new release every 2 weeks during most of the year



What’s new (since last year)?



GCC

GCC targeting aarch64-w64-mingw32

* The original purpose of llvm-mingw was for targeting ARM and ARM64
 GCC is getting support for targeting ARM64/Windows now as well
* Work ongoing for a couple of years, initial steps are finally upstreamed
o Still in early stages: Only supports C, not C++ yet
 No unwind info, no exception handling
* Not ABI compatible with the established mingw/aarch64 ABI yet
* wrong size for long double
e Variadic arguments uses the wrong calling convention
* Only uses msvcrt.dll, not UCRT yet
* End target is Cygwin/MSYS2 support (which is needed for fully native Git on Windows)



What’s new in mingw-w64
D3D12

 Much more complete D3D12 headers (via Wine)
* mingw-w64 takes many headers from Wine
e A frequent complaint used to be that the D3D12 headers were outdated

 The main D3D12 headers should now be up to date with the latest MS
SDKs (as of end of 2023)



What’s new in mingw-w64
Math functions from UCRT

* Traditionally, mingw has used msvcrt.dll
 msvcrt.dll was originally provided by MSVC 6.0 in 1998

 Now ships as part of Windows, parts updated along the Windows versions, parts stale, parts
missing (only promises what MSVC 6.0 did)

 mingw has provided their own, statically linked replacements for many things - in particular for
math - for completeness and C99 compliance

 UCRT is C99 compliant
* Can skip the statically linked math functions

« Some UCRT math functions are much faster than the old ones provided by mingw (mingw
powf was 7x slower than UCRT)



What’s new in LLVM

-fno-auto-import

 Normally, external variables can be linked from a DLL without d11import attributes - comes with a
small code generation overhead (all potentially dllimported variables referenced via . refptr stubs)

« With GCC, this can be omitted with -mcmodel=small (GCC only does .refptr on x86_64)

* Felt that code model isn’t the right match here - range is only one out of many reasons
for .refptr (Clang uses it on all architectures)

 Added a new option -fno-auto-import in Clang, for both compilation and linking
* Affects code generation when compiling

* TJells the linker to not auto import variables

» (Gives a linker error rather than potential runtime error, if code was compiled with the options
above but variables would have been auto imported



What’s new in LLVM

Misc

* Improved LTO support

 The whole base mingw-w64 libraries, including CRT startup files, can now be
built with LTO

* Not really relevant for real toolchain use (not provided in prebuilt toolchains)

* |f base files are LTO compiled, every linked executable requires LTO
compilation

e COFF linker now respects SOURCE DATE EPOCH for timestamps in binaries

e Useful for reproducible builds



What’s new in LLVM

ARMGA4EC

* | ots of work on ARM64EC - "Emulation Compatible”

 Windows 11 on ARM64 can emulate x86_64 binaries

« ARMG4EC is an ABI for generating ARMG64 code that fits into the x86_64 emulator
e Struct layouts, calling conventions match that of x86_64
« Some ARMG64 registers disallowed (everything must be mappable back to a x86_64 reqister)
* Allows you to get near-native speeds for critical code by compiling it for ARMG64EC
 Can mix and match ARM64EC and x86_64 DLLs within the same process

* Allows x86_64 plugin DLLs in an otherwise fully ported app

* Allows mixing ARM64EC and x86_64 within each EXE/DLL, on a function level



What’s new in llvm-mingw
C++ Modules

o Support for C++20 modules

e Works with recent CMake versions

 [he toolchain has to provide clang-scan-deps to let the build system
figure out dependencies between source files and modules

» Support for using libc++ as a C++23 std module

 Required cleanups of mingw-w64 headers



What’s new in llvm-mingw
Switching to Clang config files

* The defaults in Clang for a mingw target is to use libgcc, libstdc++ and link with <triple>-1d

* llvm-mingw traditionally uses wrapper scripts

e <triple>-clang (and <triple>-gcc to ease use with some build systems) is a wrapper (script or executable),
internally invoking clang -target <triple> -rtlib=compiler-rt -unwindlib=libunwind -stdlib=libc+
+ —fuse-1d=11d

* Wrappers hide this configuration from other tools

* Other Clang based tools like clangd (for IDE code completion) or clang-scan-deps operate on stored commands

 The tools see a command like <triple>-clang -c mysource.cpp - they can deduce that this means clang
-target <triple> -c mysource.cpp

 They don’t know that <triple>-clang actually is a wrapper that implicitly sets other flags
e Could set hardcoded defaults in Clang binary when compiling

 Hardcoded defaults apply to all targets, making the same Clang binary unusable for any other target



What’s new in llvm-mingw
Switching to Clang config files

* |nstead set target specific defaults via config files

* Next to the Clang binary, store a config file <triple>.cfg

 When Clang (or a Clang based tool) is invoked, it implicitly looks for any config files for the
specific target it is invoked for (either explicit —target option, or implicit default)

* Avoids needing to set defaults in wrappers

* Allows getting rid of wrappers (almost)

e <triple>-clang can be a symlink to plain clang, clang picks up the target from the
executed binary name

* Implicit options for UWP targets still require a wrapper though



Taking the same concept further?



Extending the concept?

e Single toolchain package for cross compiling for a multitude of targets is a neat thing
e Zig does this very nicely, even for multiple OSes
* Could we do the same kind of setup for e.g. Linux cross compilation?
e Targeting Linux, "any” arch, from any OS
* Easily set up a similar kind of toolchain for targeting Musl
* Single package, prebuilt Musl and libc++ for a number of architectures

* Not useful for building programs for "regular” Linux distributions though, as they usually have Glibc, but works well with static
executables

* 69 MB package for targeting 6 architectures (1386, x86_64, arm, aarch64, powerpc64le, riscvo4)
 Haven’t productized 11vm-musl (yet)
* Unsure about committing to maintaining another project

* Not sure how much extra value it adds vs regular GCC cross compiler packages



Extending the concept?

 What about Glibc?
 Compiling Glibc with Clang doesn’t (even close) work out of the box upstream

* There is a somewhat maintained branch with 137 patches on top of upstream, that should
be buildable with Clang

* Even then, bootstrapping it is much more complex than mingw-w64 or Mus|

 Even if we’d have a Clang+Glibc cross compilation toolchain, we’d need libstdc++ to
produce binaries that work on a regular distribution (or statically link libc++)

 Maybe the same issue with libunwind as well, but that can possibly masquerade as libgcc

* Pretty much would need to set up the cross sysroots with GCC anyway



Thank you!

https://github.com/mstorsjo/llvm-mingw



